
A Survey on Web Application Attacks

Gurvinder Kaur Pannu

University Institute of Engineering & Technology,
 Kurukshetra University, India

Abstract: - Web applications today provide a universal way to
access information. The internet has changed the lifestyle of
people today. Web is being used by the organizations for
providing their business. The so many uses of web
applications led to security related challenges, as the number
of applications over the internet increases so the number of
attacks is also upsurge. Hence, security becomes one of the
major concerns in web applications. Researchers have
developed various approaches for the detection and
prevention of various web applications including server side
and client side approaches. This paper presents the various
popular and common web application attacks found over the
internet such as Injection attacks (SQLI), broken
authentication and session management attacks and Cross-site
scripting attacks (XSS), the various countermeasures taken
and their respective limitations. It also proposes the future
possibilities and feasible countermeasures against these
attacks.

Keywords: -- Web Application Attacks, Web Security,
Malicious Injection attacks, SQL Injection, Broken
Authentication & Session Management Attacks, and Cross-
Site Scripting Attacks.

I. INTRODUCTION
In today’s world, Web applications have observed an

overwhelming growth over the internet, which have been
developed for various purposes. Now -a- days, almost each
and everyone is in contact with the computer technology.
Web applications openly present an interface through
which clients can interact. For managing client data, service
provider uses database for storage of client precise
information. This database is used by the attackers by
various means for obtaining client private data. Web
applications are the obvious means for attackers to
approach the elemental database, as they are usually
vulnerable to attacks. As per Open Web Application
Security Project (OWASP), code injection attack is the
most familiar and fatal attacks among the top ten web
application vulnerabilities followed by broken
authentication and session management and cross-site
scripting attacks [1]. Web applications get input from the
end users by way of textboxes in the form of name,
passwords, feedback etc. These input values are stored in
database. Malevolent users insert SQL (Structured Query
Language) query or script to do injection attacks. Web
browsers execute these queries as the code, which behave
abnormally as expected by the hacker. Authentication and
session attacks appear when an attacker hijacks the current
session or detour the authentication system. These attacks
can provide the authorization of an authenticated user to the
malevolent user, which can lead to serious consequences

such as loss of confidentiality, integrity, authentication,
authorization.

According to OWASP 2013 there are ten dominant
categories specified for web application attacks in 2013
release
 A1-Injection
 A2-Broken authentication and Session management
 A3-Cross Site Scripting (XSS)
 A4-Insecure Direct Object References
 A5-Security Misconfiguration
 A6-Sensitive Data Exposure
 A7-Missing Function Level Access Control
 A8-Cross Site Request Forgery (CSRF)
 A9-Using Components with Known Vulnerabilities
 A10-Unvalidated Redirects and Forwards.

In actual world, it is very crucial to achieve entire
security as some security flaws continually exist which can
attack the application in distinct ways. In the next sections,
the paper discusses the impact of top three-web application
attacks SQL injection (SQLI), broken authentication and
Session management and XSS.

I SQL INECTION (SQLI)

SQLI is a code injection method that takes advantage
of security vulnerability appearing in database tier of an
application. It occurs when an attacker inserts SQL
keywords as the segment of input. It executes because of
incorrect or poor verification of input data. By way of
SQLI, malicious user can acquire illegitimate right for
database and can execute data manipulation operation on it.
Broadly, injection attacks can be divided into three types.
In First Order Attack, unions or sub SQL query is inserted
to the existing statements. In Second Order Attacks,
malignant code is forever stored in the database. In this the
attacker attacks at the within application users, system
heads by means of submissions, search lists, etc. In Lateral
Injection, attacker can attack PL/SQL process that even
does not get user input. It takes place when a variable
whose data type or number is concatenated with text of
SQL statement. When an input source is found by the
malevolent user various SQLI kinds are used to accomplish
attack of different kinds [2] .
 1) TAUTOLOGY

A tautology is a statement i.e. valid forever. This type
of attack is used to bypass the verification system by using
relational operators for matching operands to create a
condition, which is always true. For instance

Select * from users where username = ‘‘ OR 1=1—‘
AND password = ‘anything’;

Gurvinder Kaur Pannu / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4162-4166

www.ijcsit.com 4162

In users database, username and password are the input
fields by which attack is carried out. In this ‘’OR 1=1--
“will always send back true condition and usually known as
tautology.
2) PIGGY-BACKED QUERIES

In this attack, an extra query is added to the original
query and is executed as the part of initial query. For
example

Select contact from info where login=’xyz’ AND
pinnum =’123’; drop table info;

Here execution of these two queries will result in
dropping of info table. So tables can be added or deleted
using this type of attacks.
3) LOGICALLY INCORRECT QUERIES

The prime goal of this type of attack is to catch useful
facts of the database by provoking error message, as
number of columns of the database, database name,
database version, label and type of each column. This info
can be used further for misusing database.
4) UNION QUERY

It is also known as Statement injection attack. This
attack is accomplished by imbedding union query so that
database send back the dataset that is union of original
query. For example

Select * from users where username =’’ UNION select
* from admin—‘and password =’anything’”

Here query turn into union of both select queries. First
query returns null and second returns all data from table
admin.
5) STORED PROCEDURE

Stored procedures are the codes that are already
present in the database and they are vulnerable as program
code. They return true for authorized users and false for
unauthorized ones. If the attacker input “,;SHUTDOWN;--“
for username then stored procedure creates following
query

Select login from users where
username=’’;SHUTDOWN;-- and password=’anything’.

The initial query is carried out and consequently the
second query that is illegitimate is also run and lead to
database shut down. Therefore, it is examined that stored
procedures are as vulnerable as web application code.
6) INFERENCE

This type of attack is carried out to acquire information
concerning the vulnerable parameter of the database. This
sort of attack generates queries so that database or
application reacts differently from as destined by the
programmer. The two methods used in this class of attack
are Blind Injection and Timing attacks. In blind injection
attacker accomplish query that include result of true or
false. If returned value is false then error is generated else
application behaves properly. In timing attack, attacker run
query in form of if-then statement and adopt WAITFOR
keyword that causes database to lag its reply.

II BROKEN AUTHENTICATION & SESSION MANAGEMENT

It happens whenever there is session hijacking or fake
authentication. It involves administrartion of all sonditions
of authentication and sessions which can influence the web
servers, application servers, web application environment

and can be source of wrong use of rights. For e.g. the
attacker can alter message or can misuse data retrieved.
Different types of cryptographic algorithms and session
management tokens are used by developers for this type of
attacks but still it is a dominant matter of concern [3].For
managing verification and session issues all manner of
points should beobserved in brain for instance :
1) PASSWORD STRENGTH

Passwords should have least possible length and proper
use of alphabets, numbers and special keywords to prevent
presumption.
2) PASSWORD USE

 Number of login attempts should be restrained, as
authorized users will not ever try to attempt repeatedly if he
forgets the password. After a specified number of attempts
user should be restrained to avoid attack.
3) PASSWORD CHANGE CONTROL

An individual password change method should be
there to avert the security fault. The mechanism should
inquire for old and new password but altering email address
or modifying phone number should be prevented.
4) PASSWORD STORAGE

Password should be saved in with encrypted or hashed
mechanism to defend them from disclosure.
5) SESSION ID PROTECTION

Session IDs should be long, difficult, having random
numbers that cannot be simply figure out. It should be
recreated repeatedly in an ongoing session to diminish
session ID legitimacy. Session IDs must be changed while
carrying out operations such as switching to SSL,
validating users, or other major transitions. Session IDs
selected by a visitor should never be accepted.

III CROSS SITE SCRIPTING (XSS)

It is a ordinary vulnerability in web applications. XSS
attack take place when HTML or JavaScript code is
inserted into the database by way of inputs. If the particular
inputs are not refined from server side, then serious
consequences may happen such as recieving and
communicating cookies, averting to third party. The
sufferer of the XSS are the maximum common sources
such as comments, feedback, search engines. They mark
against valid users and system administrators. In XSS
attacks, the mugger executes scripts to target websites for
session hijacking, cookie stealing, and malicious
redirection. XSS attacks are of two types [4]
1) STORED OR PERSISTENT ATTACK

In this the malicious code inseted by the attacker is
stored permanently on the mark server. When a user
requests for the stored information this script is executed in
its context. Examples for raider favorite targets include web
mail messages, forum, comment field, visitor log etc.
2) REFLECTED OR NON PERSISTENT ATTACK

Reflected attack take place off the web server, such as
it exist in an error message or in a search result that
comprises part of input or all of the input directed to the
server as part of the query. They are also sent to victims via
redirects & forwards, such as in an e-mail message, which
revert the user to different link or to an un-trusted source or
server.

Gurvinder Kaur Pannu / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4162-4166

www.ijcsit.com 4163

IV EXISTING APPROACHES FOR SQL INJECTION

PREVENTION
1)“Injection Attack Detection using the removal of SQL
Query Attribute values “ (Jeom-Goo Kim) (2011)

Jeom-Goo Kim suggested [5] a clean efficient SQL
Query elimination procedure, which uses combined style of
static and dynamic analysis. This mechanism examines and
inspects input by removing the attribute value of SQL
queries. A function F is projected which has capability to
remove the attribute present in SQL queries. The attribute
value of static SQL query and SQL queries generated by
the runtime environment will be removed. If after deletion
of attribute, the query equals the fixed SQL query then
there is no attack discovered. Although if some
dissimilarity is present in query then attack is considered.
The limitation of this application is that it has not been put
into action until now.
2)“Research of intelligent intrusion detection system
based on web data mining technology” (Chai
Wenguuang, Tan Chunhui, Duan Yuting) (2011)

Wenguuang and Yuting proposed [6] a smart agent
technology using data mining. In this method stores data is
stored in local database through data acquisition agent send
the data to mining agent for pre processing examination.
The exposure of vulnerability is done by alarm evaluation
model, which generate an alarm for every detected attack.
The intelligent intrusion detection with web data mining is
found more efficient than traditional intrusion detection
system. Improvement of data mining algorithms is needed
for enhancement of proposed mechanism.
3) “SQLStor: Blockage of Stored Procedure SQL
Injection Attack Using Dynamic Query Structure
Validation” (Sruthy Mamadhan, Manesh T, Varghese
Paul) (2012)

Mamadhan et al. in [7] established a new mechanism
for prohibiting SQL injection attacks in JSP web
applications. The idea is based on validation of structure of
dynamic query before execution. The process consists of
different steps i.e. at first create a non-malignant query
from the original query by substituting user inputs to the
query with gentle inputs. After that for authorization, check
the structure of the Benign Query. Now stacked queries are
calculated in both original SQL query and produced non-
malignant query. If both counts differ, then SQL injection
attack is present and can be prevented from execution
beyond doing semantic inspection. If they are identical then
syntax trees are constructed for both the queries and are
compared. If they are comparable, the query is performed
otherwise attack is reported. This approach prohibits
various kinds of injection attacks.
4) “SQLIMW: a new mechanism against SQL-Injection”
(Gao Jiao, Chang-Ming XU, JING Maohua) (2012)

Jiao et al. [8] introduce a middle-ware-based
prevention mechanism (SQLIMW). In this method, a
middleware is added in the system’s backend to demolish
the SQL Injection attacks. The SQLIMW implement more
safety and adaptability by renewing encryption with HASH
function and preserve username, password and private key
of SQLIMW all at once by XOR operation. It discards the
common way for encryption and uses the hash method.

Because of both encryption and hashing clear data become
the "confusion" and not readable and the execution speed of
hash transformation is very fast than that of the DES and
other cryptographic transformations. This method is not
restricted to single layer of Web application; it can lie in
any layer of Web application system swapping info with
the database.
5) “Blocking of SQL Injection Attacks by Comparing
Static and Dynamic Queries” (Jaskanwal Minhas and
Raman Kumar) (2013)

Minhas and Kumar suggested a straightforward,
effective and efficient method [9] to disclose SQLI attacks
and describe and discovered a new attack other than
existing SQLI attacks named white space manipulation
attack. In this proposal, static and dynamic analysis is
combined. After discarding attribute values, it compares
static and dynamic SQL queries. The incoming queries are
compared character by character with static queries having
same number of tokens to lessen response time. After
removing attribute values, SQL queries become self-
sufficient so this approach can be applied to any database.

V EXISTING APPROACHES FOR BROKEN

AUTHENTICATION & SESSION MANAGEMENT

PREVENTION
1) “Root cause analysis of session management and
broken authentication vulnerabilities” (D.Huluka and
O.Popov) (2012)

Huluka and Popov [10] have explored the root cause
behind the session management and broken authentication
vulnerabilities. As per them, there are numerous ways to
exploit vulnerabilities. Therefore, it is very important to
have a deep and clear understanding of problem. Therefore,
they analyzed the root causes behind these vulnerabilities
and presented how it can be used to improve the security
aspects of web applications. They identified 11 root causes
of session management and nine root causes behind broken
authentication vulnerabilities. Identification of these root
causes led to efficient solutions that can limit repetition of
these attacks on web applications.
2) “Automatic Detection Of Session Fixation
Vulnerabilities in Web Applications“(Yusuki Takamastu,
Yuji Kosuga, Kenji Kono) (2012).
In [11] Takamastu et al. introduced a method to examine
session fixation attack. Session fixation is an attack in
which attacker compel visitor to use session ID send by
him and can use application as a guest. In this method, they
created a structure that works in three steps. First step is
Packet Capturing catch all the packets notice the diversity
in session-IDs. The structure exists between the user
browser and the web application server. In second step,
initial inspection is done for examining the vulnerability for
session ID. The third step is Attack Simulation in which
system initiate attack simulator that automatically generates
the identical environment as that of real attacker and a
victim. At this time virtual attacker approach and login to
web application with Session ID (SID) that attacker get.
The virtual attacker confirms if he can login with the
obtained SID or not. The reply is analyzed for keywords.
For example, “welcome victim” if such type of keyword is

Gurvinder Kaur Pannu / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4162-4166

www.ijcsit.com 4164

acquired then web application is treated as vulnerable. The
flaw of this method is that it is hard to handle such kind of
virtual environment for real world application.

VI EXISTING APPROACHES FOR CROSS-SITE SCRIPTING

PREVENTION
1) “CIDT : Detection of malicious code injection attacks
on web application” (Atul S. Choudhary and M.L Dhore)
(2012)

Choudhary & Dhore [12] presented a Code Injection
Detection Tool based on a Proxy Agent that organize the
request as scripted request, or query based request. There
are two components: Query Detector and Script Detector.
The HTTP request approaching from client side is first
forward to the CIDT within which the request is passed to
both components one by one. Firstly, the Query detector
verifies the request and the query are dropped if any invalid
character is found. Only the authentic requests are passed to
the next module, the Script detector that also refine the
request for invalid tags and encodes it before sending it to
the web server. The limitation of this approach is it requires
more time to reply, that is the delay time is more.
2)” Cross Site Scripting Attacks Detection Algorithm
Based on the Appearance Position of Characters”
(Takeshi Matsuda, Daiki Koizumi) (2012).

Matsuda & Koizumi [13] presented a detection method
against cross-site scripting attacks by drawing out an attack
feature of XSS by seeing the appearance position and
frequency of symbols. It study the attack features from
given attack specimens. There are three modules in this
approach.. The first one is the classification module in
which sample of 32 characters is collected based upon the
characters that frequently occurs in attacks. The second
module will calculate the important degree of characters.
The final module will detect the attack-by-attack feature
value & threshold that is taken as 15 for the proper
detection of the attack in proposed approach. The main
disadvantage is it is calculation based and it does not tackle
the new attacks effectively.
3)” Developing a Security Model to Protect Websites from
Cross-site Scripting Attacks Using Zend Framework
Application”, (Yousra Faisal Gad Mahgoup Elhakeem,
Bazara I. A. Barry) (2013)

Elhakeem & Barry [14] bring up the issues related to
XSS attacks and providing a simple and useful security
model to prevent websites from such attacks with the help
of ZEND framework. The security model is based on a
chain of levels and is built using a combination of tools. It
is divided into four levels as: Security Awareness, Server
Security, Client Security, & Design Guidelines. The
framework defined by them is Zend Framework (ZF),
which is an open source framework for developing web
applications and services with PHP. This loosely coupled
architecture allows developers to use components
individually and offers a robust Model View Controller
(MVC) implementation. The MVC paradigm is a way of
breaking an application, or even just a piece of an
application's interface, into three parts which are: Model:
The model part of the application is the part that is
concerned with the specifics of the data to be displayed,

View: The view consists of bits of the application that are
concerned with the display to the user, & Controller: The
controller ties together the specifics of the model and the
view to ensure that the correct data is displayed on the
page. It accepts input from the user and instructs the model
and view port to perform actions based on that input. It
requires lot of tools to be combined so compatibility issues
are there.

VII FUTURE WORK
To provide better services over the internet it is

important to have security over the web applications. The
main aim of application developer is to provide their
business over the web but the web applications may have
various types of vulnerabilities and prone to various
dangerous attacks that can harm an organization data and
reputation. My future work will incorporate the web
security tool that can detect and prevent maximum number
of web application attacks. The proposed tool will mainly
detect and prevent the attacks considered in this paper with
minimum response delay and with zero false negatives and
positives.

VII CONCLUSION

SQLI, Broken authentication and session management,
and XSS are considered as the most dangerous and
common web application attacks found over the internet. In
this paper, we have reviewed many techniques against that
suffer from various types of limitations such as:
 Built-in limitations
 Partial implementations
 Complicated framework
 Developer’s ability
 Run-time overhead
 False positives and false negatives
 No secure channel between the web server and web

browser
 Response delay
 Additional infrastructure
 Cost of deployment

Many industries are employing web services for their
benefits on the World Wide Web but for relieving
themselves from the additional cost, they do not go for the
security of the websites they created. Eventually it harms
the users and company too. With the expansion of web
applications, it is need of the hour to have an inclusive and
logical framework for the prevention of various web
application attacks so that better services can be provided
to end users.

REFERENCES
[1] https://www.owasp.org/index.php/Top_10_2013-Top_10
[2] Nilesh Kochre, Satish Chalukar, Santosh Kakde, “Survey On SQL

Injection Attacks And Their Countermeasures “, International
Journal Of Computational Engineering And Management, Vol -14,
October 2011

[3] https://www.owasp.org/index.php/Top_10_2013-A2-
Broken_Authentication_and_Session_Management

[4] Hossain Shaihriar and Mahammad Zulkernine, “S2XS2: A Server
Side Approach To Automatically Detect XSS Attacks”, Ninth
International Conference on Dependable, Automatic Secure
Computing, IEEE, 2011 PP.7-17

Gurvinder Kaur Pannu / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4162-4166

www.ijcsit.com 4165

[5] Jeom-Goo Kim, “Injection Attack Detection Using Removal of SQL
Query Attribute Values “, IEEE 2011

[6] Chai Wenguuang, Tan Chunhui, Duan Yuting, “Research Of
Intelligent Intrusion Detection System Based On Web Data Mining
Technology”, IEEE 4th International Conference On Business
Intelligence And Financial Engg. 2011, PP. 14-17

[7] Sruthy Mamadhan, Manesh T, Varghese Paul, “SQLStor: Blockage
of Stored Procedure SQL Injection Attack Using Dynamic Query
Structure Validation” 12th International Conference on Intelligent
Systems Design and Applications (ISDA), IEEE, Nov. 2012, PP.
240-245

[8] Gao Jiao, Chang-Ming XU, JING Maohua “SQLIMW: a new
mechanism against SQL-Injection” in Proc. Of 2012 International
Conference on Computer Science and Service System, 2012, PP.
1178-1180

[9] Jaskanwal Minhas, Raman Kumar, “Blocking of SQL Injection
Attacks by Comparing Static and Dynamic Queries” in International
Journal Computer Network and Information Security, vol.2, 2013
PP.1-9

[10] D.Huluka, O.Popov, “Root cause analysis of session management
and broken authentication vulnerabilities”, IEEE World Congress on
Internet Security, 2012, PP. 82-86

[11] Yusuki Takamastu, Yuji Kosuga, Kenji Kono, “Automatic Detection
Of Session Fixation Vulnerabilities “, 2012 Tenth Annual
International Conference on Privacy, Security and Trust IEEE, PP-
112-119

[12] Atul S. Choudhary and M.L Dhore, “CIDT: Detection Of Malicious
Code Injection Attacks On Web Application”, International Journal
Of Computing Applications Volume-52-N0.2, August 2012, PP. 19-
25

[13] Takeshi Matsuda, Daiki Koizumi, “Cross Site Scripting Attacks
Detection Algorithm Based on the Appearance Position of
Characters”, 5th International Conference on Communications,
Computers and Applications, IEEE, October 2012, PP. 65-70

[14] Yousra Faisal Gad Mahgoup Elhakeem , Bazara I. A. Barry,”
Developing a Security Model to Protect Websites from Cross-site
Scripting Attacks Using Zend Framework Application”,
International Conference on Computing, Electrical and Electronics
Engineering (ICCEEE), August 2013, PP. 624-629

Gurvinder Kaur Pannu / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4162-4166

www.ijcsit.com 4166

